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The system of equations for the analysis of rotationally symmetric shells under
time-dependent or static surface loadings has been formulated with the transverse,
meridional, and circumferential displacements as the dependent variables. All
loading functions must be continuous. The thickness h of the shell may vary along
the meridian. Four of the eight natural boundary conditions will be prescribed as
time-dependent boundary conditions at each boundary edge of the shell. Surface
loadings and inertia forces in the three displacement directions of the shell have
been considered. Fourier series are used in the circumferential direction of the shell.
Solutions for each Fourier component are found by replacing all derivatives by
their "nite di!erence equivalents and solving the resulting system of algebraic
equations at successive increments of the time variable. The complete system of
equations is solved implicitly for the "rst time increment, while explicit relations
are used to determine the three primary displacements within the boundary
edges of the shell for the second and succeeding time increments. The remaining
unspeci"ed primary variables are then determined by separate implicit solutions at
each boundary for the second and succeeding time increments. Subsequently, all
remaining primary and secondary variables are found explicitly. A variable node
point spacing may be speci"ed over the full range of the spatial "nite di!erence
mesh. A numerical stability criterion which will ensure stable solutions for selected
time increments and spatial meshes has been derived and found to agree with
results for typical example solutions. Numerical solutions obtained with the
computer program which accompanies this development have been found to be
stable and in agreement for a wide range of practical values of both spatial and time
increments for typical shells and loadings. Static and dynamic solutions for a
parabolic shell with "xed boundary conditions at one edge and free boundary
conditions at the other edge have been obtained using both constant and variable
node point spacings and presented as examples.

( 2000 Academic Press
1. INTRODUCTION

In the absence of closed-form solutions for the general shell problem, several
investigators have obtained solutions by numerical methods. These investigators
include Penny [1], who solved the symmetric bending problem of a general shell in
1961 by "nite di!erences; Radkowski et al. [2], who solved the axisymmetric static
2-460X/00/101119#27 $35.00/0 ( 2000 Academic Press
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problem in 1962 by "nite di!erences; and Budiansky and Radkowski [3], who
employed "nite di!erence methods to solve the unsymmetrical static bending
problem in 1963.

The solution to the static problem of rotationally symmetric shells of revolution
subjected to both symmetrical and non-symmetrical loading was obtained also
by Kalnins [4] in 1964. Starting with the equations of the linear classical
bending theory of shells, in which the thermal e!ects were included, Kalnins
derived a system of eight "rst order ordinary di!erential equations which he
solved by direct numerical integration over preselected segments of the shell.
Gaussian elimination was used to solve the resulting system of matrix equations
obtained by providing continuity of the fundamental variables at the segmental
division points.

In 1965, Percy et al. [5] also developed a "nite element technique for the analysis
of shells of revolution under both axisymmetric and asymmetric static loading by
idealizing the shell as a series of conical frusta.

The solution for the free vibration characteristics of rotationally symmetric shells
with meridional variations in the shell parameters by means of his multisegment
direct numerical integration approach was also obtained by Kalnins [6] in 1964.
Subsequently, in 1965, the solution for the response of an arbitrary shell subjected
to time-dependent surface loadings was obtained by Kraus and Kalnins [7] by
means of the classical method of spectral representation. The solution was
expanded in terms of the modes of free vibration as determined previously by
Kalnins [6], and the orthogonality of the normal modes was proved for an
arbitrary shell.

In 1966, Klein [8] also published an article in which he describes a matrix
displacement "nite element approach to the linear elastic analysis of multilayer
shells of revolution under axisymmetric and asymmetric dynamic and impulsive
loadings. The method of solution involves the idealization of the shell as a series of
conical frusta joined at nodal circles.

Subsequently, Smith [9, 10] published reports containing numerical procedures
for the analysis of rotationally symmetric thin shells of revolution under
time-dependent impulsive and thermal loadings. The "eld equations consisted of
eight "rst order partial di!erential equations with respect to the meridional
co-ordinate of the shell, and the solution for each Fourier harmonic was obtained
by employing low order "nite di!erence representations for all time and spatial
derivatives.

In 1973, Smith [11] published a report giving numerical procedures for "nding
the dynamic response of rotationally symmetric thin shells of revolution under
time-dependent surface and thermal loadings utilizing a higher order "nite
di!erence representation of spatial derivatives than that used in references [9, 10].
The "eld equations consisted of eight "rst order di!erential equations, while the
time derivatives were represented by ordinary backward "nite di!erences, thus
resulting in stable implicit solutions for all choices of the time increment.

In 1975, Radwan and Genin [12] published their development of the equations
for the determination of the non-linear response of thin elastic shells of arbitrary
geometry under either static or dynamic loading through the use of assumed,
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known, or calculated mode shape functions. The geometric non-linearities were
considered by employing the strain-displacement relations of the Sanders}Koiter
non-linear shell theory. Introduction of the mode shape functions into the system of
governing equations leads to a system of ordinary di!erential equations for the
generalized time co-ordinates.

In 1977, Smith [13, 14] published reports giving numerical procedures for the
analysis of rotationally symmetric thin shells of revolution under continuous time
dependent distributed surface and thermal loadings by use of both a high order
"nite di!erence representation of the spatial derivatives and explicit relations for
the dependent variables for the second and succeeding time increments.

In 1983, Chang et al. [15] published their development of procedures for the
linear dynamic analysis of rotationally symmetric shells using "nite elements and
modal expansion. Doubly-curved axisymmetric shell "nite elements with the
loadings and displacements expanded in Fourier series in the circumferential
direction of the shell and with the requisite number of frequencies and mode shapes
for the meridional displacements for each Fourier number were used in the
formulation of the system of equations.

In 1983, Smith [16, 17] presented numerical formulations for determining both
static and dynamic solutions for rotationally symmetric thin shells of revolution
subjected to distributed loadings which may be discontinuous. Correct and
converging solutions are obtained by formulating the governing equations in terms
of the transverse, meridional, and circumferential displacements as the dependent
variables and by using ordinary "nite di!erence representations based upon
a constant nodal point spacing for the derivatives.

In 1986, Manteu!el and White [18] published the results of their studies relative
to "nite di!erence solution of single second-order di!erential equations using
non-uniform meshes. Those studies concern the truncation errors and order of
accuracy of solutions obtained by some commonly used "nite di!erence
representations. It is concluded therein that most "nite di!erence schemes yield
second-order-accurate solutions despite the authors' "nding therein that the
associated truncation error is only of the "rst order.

In 1990, Smith [19] completed development of procedures for determining the
total shell response of any rotationally symmetric general shell under
time-dependent (or static) surface loadings by the modal superposition method.
The solutions treated there are accomplished by "rst determining the free vibration
characteristics of the shell through the use of in#uence coe$cients for the
discretized shell. Subsequently, the time-dependent solution is expanded in terms of
the modes of free vibration of the shell to obtain the total shell response as
a summation of the several modal contributions. The procedures used are
analogous to procedures given by Norris et al. [20] and illustrated therein by
a simply supported beam structure.

In 1992, Manteu!el and White [21] generalized their studies of reference [18] by
considering the two-point boundary value problem for a single di!erential
equation of arbitrary order when solved by use of irregular "nite di!erence meshes.
These studies are implemented by "rst writing the high-order equation as a system
of "rst order di!erential equations and then proceeding with an analysis of the
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"rst-order equations by "nite di!erence schemes. In particular, it is found therein
that if the "rst-order system is represented by a centered Euler scheme, solutions
will be second-order-accurate despite possibly inconsistent truncation errors.

In 1994, Smith [22] published a second report in which numerical procedures
were demonstrated for determining the dynamic response of rotationally symmetric
open-ended thin shells of revolution under continuous time-dependent distributed
surface and thermal loadings by use of a high order "nite di!erence representation
of the spatial derivatives and explicit expressions for the displacement variables
within the boundary edges of the shell for the second and succeeding time
increments. Reference [22] constitutes a revision to the formulation and
accompanying program of reference [13] to provide stable solutions for either free,
partially restrained, or fully restrained boundaries.

In 1995, Smith [23] published his development of the formulation for the "nite
di!erence analysis of general open-ended rotationally symmetric shells under either
static or time dependent continuous loadings for which a variable nodal point
spacing may be used in the meridional "nite di!erence mesh. As in reference [16],
the governing di!erential equations were formulated in terms of the displacements
w, u

(
, and uh and Fourier expansion was used in the circumferential direction of the

shell. The complete system of equations is solved implicitly for the "rst time
increment after using low order central di!erence variable nodal point spacing
representations for all spatial derivatives and using ordinary time derivatives.
Explicit relations are used to obtain the displacements w

n
, u

(n
, and uhn within the

boundary edges of the shell for the second and later time increments. The remaining
fundamental variables are, for the second and later time increments, found from
separate implicit solutions at each boundary. The selection of a time increment
which, in conjunction with the spatial "nite di!erence mesh, is expected to produce
numerically stable solutions is obtained from an explicit empirical relation for the
time increment in terms of the minimum spatial increment.

In 1997, Smith [24] published his development of improvements to the
formulation and "nite di!erence representations used in reference [9]. These
improvements included the addition of inertia forces and applied loadings in the
circumferential direction of the shell and incorporation of the meridional
coordinate s as the spatial variable in lieu of the co-ordinate z along the axis of
symmetry of the shell. Solution formulations by both the explicit method and the
implicit method for time-dependent loadings are included. Solutions found by the
two methods show favorable comparison.

In 1998, Smith [25] published a second report on the "nite di!erence analysis of
rotationally symmetric shells under either static or dynamic loadings for which
a variable node point spacing may be used in the spatial "nite di!erence mesh and
for which an eigenvalue analysis of the explicit coe$cient matrices to evaluate
numerical stability (or instability) of the solution for given choices of spatial mesh
and time increment for the case of dynamic loadings was incorporated.
Additionally, the "nite di!erence representation for second and fourth derivatives
was altered from that used in reference [23] to provide a consistent order of
truncation error for all derivatives, thus departing from a central derivative
representation for second and fourth derivatives.
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Among references [1}25] above which provide solutions of the shell equations by
the "nite di!erence method, only references [23, 25] use a variable node point
spacing in the "nite di!erence mesh. Finite di!erence solutions of the shell
equations by the formulations used in the others of these references are based upon
use of a constant node point spacing. The studies embodied in references [18, 21]
together with similar uncited references in the open literature relate to "nite
di!erence analysis of particular single equations using non-uniform meshes, none of
which pertain to either static or dynamic "nite di!erence analysis of the shell
equations using a variable node point spacing. The di!erential equations
themselves are the same for references [16, 23, 25]; but, as indicated previously,
a variable node point spacing "nite di!erence mesh is incorporated only in the
formulations of references [23, 25]. It is of interest to note that typical solutions as
reported in this article are identical for cases of constant node point spacings when
found by the programs of references [23, 25] and that the results agree to 3 and
4 signi"cant "gures when a variable node point spacing is used. The author is also
not aware of the publication in the open literature of any "ndings pertaining
directly to numerical stability analysis of the "nite di!erence equations for shell
structures under dynamic loadings. The purpose of this article is therefore to
present the development of procedures for the "nite di!erence analysis of
rotationally symmetric shells for which node point spacings may be arbitrary
throughout the mesh and for which a criterion for numerical stability or instability
of the solution is given as presented by the author in reference [25].

2. GOVERNING DIFFERENTIAL EQUATIONS

Our system of governing equations will be based on the linear classical theory of
shells as given by Reissner [26]. Surface loadings and inertia forces in each of the
three displacement directions w, u

(
, and uh will be considered. All rotary inertia

terms will be neglected.
The thickness h of the shell may vary along the meridian, and we assume

continuity of h and its derivatives through the second order. We assume that
./R

(
@1 and that ./Rh@1, where . is measured from the shell middle surface on

a normal to the middle surface and is positive outward. Hence, we take Nh("N
(h

and Mh("M
(h.

The geometry and co-ordinate system for the middle surface of our shell is shown
in Figure 1. Shell element membrane and shear forces are shown in Figure 2, and
shell element bending and twisting moments are shown in Figure 3.

The position of any point on the middle surface of the shell may be de"ned by the
co-ordinates h and z. The undeformed geometry of the shell's middle surface will
accordingly be de"ned by the function r"r(z). However, either the co-ordinate
/ or the co-ordinate s may be used in lieu of the co-ordinate z. We choose to
develop our governing equations with the meridional co-ordinate s as the
independent variable. This complete development is given in reference [25].

We assume that the material of the shell is both homogeneous and isotropic. We
neglect the e!ects of the thermal loadings on E, l, and a and assume that E, l, and
a are constant.



Figure 1. Typical shell of revolution.

Figure 2. Shell element membrane and shear forces.
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Figure 3. Shell element bending and twisting moments.
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Our system of governing equations involving the stress}strain relations,
strain-displacement relations, and the force equilibrium equations can be
reduced to a system of equations consisting of three di!erential equations in terms
of three unknown displacements w, u

(
, and uh . It will be convenient, however,

to incorporate into our system of equations as unknowns at the boundary edges of
the shell the remaining quantities which enter into the natural boundary conditions
at /"constant. In the classical theory of shells, the quantities which appear in
the natural boundary conditions on a rotationally symmetric edge of a shell of
revolution are the generalized displacements w, u

(
, uh, and b

(
and the

generalized forces Q, N
(
, N, and M

(
. Thus, our system of equations will

consist of the three "eld equations in terms of the displacements w, u
(

and uh
and a de"nition of b

(
, Q, N

(
, N, and M

(
at each boundary in terms of

the displacements w, u
(
, and uh together with four equations prescribing the

four of the appropriate quantities w, u
(
, uh, b(, Q, N

(
, N, and M

(
at each boundary

of the shell. The quantities N and Q are the e!ective shear resultants and are
de"ned as

N"Nh(#
sin/

r
Mh(, Q"Q

(
#

1
r

Mh(,h . (1, 2)

We de"ne the quantities w, u
(
, uh, b(, Q, N

(
, N, and M

(
to constitute the primary

variables in our system of equations. The variables bh, Nh, Nh(, Mh, Mh(, Q
(
, and

Qh are designated as the secondary variables. From two of our "ve useful equations
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of equilibrium, we "nd

Q
(
"

1
r

Mh(,h#M
(,s

#

cos/
r

(M
(
!Mh)#m

(
, (3)

Qh"
1
r

Mh,h#Mh(, s#
2 cos/

r
Mh(#mh . (4)

By substituting equations (3) and (4) into the remaining three equations
of equilibrium, we obtain three reduced equations of equilibrium in terms
of the force variables. These three equations may be found in references
[14, 17, 25].

To formulate our system of equations in terms of the displacements w, u
(
, and uh ,

we express the stress resultants Nh , N
(
, Nh(, Mh , M(

, Mh(, N, and Q in terms of
the displacements and substitute the appropriate quantities into the equations
involving the force variables. This complete development may be found in reference
[25].

Typical boundary conditions to be applied at the boundary s
0

are

w(s
0
, h, t)"w@(s

0
, h, t) or Q(s

0
, h, t)"Q@ (s

0
, h, t), (5a)

u
(
(s
0
, h, t)"u@

(
(s
0
, h, t) or N

(
(s
0
, h, t)"N@

(
(s
0
, h, t), (5b)

uh(s0, h, t)"u@h (s0, h, t) or N(s
0
, h, t)"N@(s

0
, h, t), (5c)

b
(
(s
0
, h, t)"b@

(
(s
0
, h, t) or M

(
(s
0
, h, t)"M@

(
(s
0
, h, t), (5d)

where the primed variables indicate speci"ed quantities and where similar
conditions will be imposed at the boundary s

N
.

For the initial conditions, we will prescribe initial values of the displacements and
velocities in each of the co-ordinate directions w, u

(
, and uh . Thus, the initial

conditions to be considered are typically

w(s, h, t
0
)"w@(s, h, t

0
), w5 (s, h, t

0
)"w5 @(s, h, t

0
), (6a, b)

where the primed variables indicate speci"ed values of the initial displacements and
velocities.

To solve our system of equations, we expand all loadings and dependent
variables in the circumferential direction of the shell in Fourier series. We will
truncate these in"nite series at a "nite number of terms for the solution of speci"c
shell problems. We require that all loading functions be continuous.

The Fourier series representations of the loadings p
(
, m

(
, p, ¹

0
, and ¹

1
, the

primary variables w, u
(
, b
(
, Q, N

(
, and M

(
, and the secondary variables Nh, Mh, and

Q
(

are typically

p
(
"

P
+
n/0

p
(n

(s, t) cos nh#
P
+
n/1

pN
(n

(s, t) sin nh. (7a)
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The loadings pH and mH, the primary variables uh and N, and the secondary
variables bh, NH(

, MH(
, and Qh are typically

ph"
P
+
n/1

phn(s, t) sin nh#
P
+
n/0

pN hn(s, t) cos nh. (7b)

Upon substituting equations (7) into our single system of equations involving h, s,
and t as the independent variables, we obtain P#1 separate decoupled systems of
equations in the variables s and t to solve in lieu of the single system of equations in
the variables h, s, and t. For each system we obtain two separate sets of equations,
one for the variables which are designated without a bar and another for the
variables which are designated with a bar. Here and elsewhere in the sequel where
double signs occur in the equations, the upper sign is to accompany the "rst set of
equations and the lower sign is to apply to the second set. Single signs will apply to
both sets. The rather lengthy coe$cients A

1
}A

10
, B

1
}B

13
, C

1
}C

9
, and D

1
}D

50
,

which involve geometric and material parameters, loading terms, and the Fourier
component designator n, appearing in the system of equations so found for each
Fourier component may be found in reference [25].

With the referenced de"nition of coe$cients, our "eld equations for each Fourier
component of loading are given by

!A
1
w
n,sss

!A
2
w

n,ss
#A

3
w

n, s
#A

4
w

n

#A
5
u
(n, ss

#A
6
u
(n,s

#A
7
u
(n
$A

8
uhn,s$A

9
uhn

!

chr
g

u
(n, tt

"A
10
!r Ap(n#

1
R
(

m
(nB, (8a)

!B
1
w

n,ssss
!B

2
w
n, sss

#B
3
w

n, ss
#B

4
w

n, s
#B

5
w

n

#B
6
u
(n,sss

#B
7
u
(n, ss

#B
8
u
(n, s

#B
9
u
(n

$B
10

uhn,ss$B
11

uhn,s$B
12

uhn!
chr
g

w
n, tt

"B
13

Gnmhn

!r(p
n
#m

(n,s
)!m

(n
cos/, (8b)

$C
1
w

n, ss
$C

2
w
n, s

GC
3
w

n

GC
4
u
(n,s

GC
5
u
(n

#C
6
uhn, ss#C

7
uhn, s#C

8
uhn

!

chr
g

uhn, tt"GC
9
!mhn sin/!rphn . (8c)
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The primary variables b
(n

, N
(n

, M
(n

, N
n
, and Q

n
in terms of the displacements are

b
(n
"!w

n, s
#

1
R
(
u
(n

, (9a)

N
(n
"K(D

1
w
n
#u

(n,s
#D

2
u
(n
$D

3
uhn!D

4
¹

0n
), (9b)

M
(n
"D A!w

n, ss
!D

2
w

n, s
#D

5
w

n
#

1
R
(
u
(n,s

#D
6
u
(n
$D

7
uhn!D

4
¹

1nB, (9c)

N
n
"$D

37
w

n, s
GD

38
w

n
GD

39
u
(n
#D

40
uhn, s#D

41
uhn, (9d)

Q
n
"!Dw

n, sss
!D

42
w
n, ss

#D
43

w
n, s

!D
44

w
n

#D
45

u
(n,ss

#D
46

u
(n,s

#D
47

u
(n

$D
48

uhn,s$D
49

uhn!D
50

#m
(n

. (9e)

The variables N
n

and Q
n

may also be given by

N
n
"Nh(n#D

36
Mh(n, Q

n
"Q

(n
$D

10
Mh(n . (10a, b)

The secondary variables are de"ned in terms of the displacements in reference
[25].

Equations (9) will be written for each boundary and incorporated into our
system of equations for determining or de"ning w

n
, u
(n

, and uhn on the range of the
variable s and b

(n
, N

(n
, M

(n
, N

n
, and Q

n
at the boundaries of the shell. The

remaining primary variables may then be found from equations (9) or (9) and (10).
Typical boundary conditions to be considered at the boundary s

0
for each

Fourier harmonic are

w
n
(s
0
, t)"w@

n
(s
0
, t) or Q

n
(s
0
, t)"Q@

n
(s
0
, t), (11a)

u
(n

(s
0
, t)"u@

(n
(s
0
, t) or N

(n
(s
0
, t)"N@

(n
(s
0
, t), (11b)

uhn(s0, t)"u@hn(s0, t) or N
n
(s
0
, t)"N@

n
(s
0
, t), (11c)

b
(n

(s
0
, t)"b@

(n
(s
0
, t) or M

(n
(s
0
, t)"M@

(n
(s
0
, t), (11d)

where the primed variables denote speci"ed quantities and where similar boundary
conditions will be imposed at the boundary s

N
.

The initial conditions for each Fourier harmonic are typically

w
n
(s, t

0
)"w@

n
(s, t

0
), wR

n
(s, t

0
)"wR @

n
(s, t

0
), (12a, b)

where the primed variables are speci"ed quantities.
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The system of equations (8}12) has been solved numerically by Smith
[9, 10, 16, 17, 23] by use of ordinary constant spacing spatial "nite di!erence
representations, by Smith [11, 13, 14, 22] by use of higher order constant spacing
spatial "nite di!erence representations, and by Smith [19] by using a constant
spacing ordinary spatial "nite di!erence mesh in conjunction with the modal
superposition method. Our purpose here is to present solutions by Smith [25]
which permit a variable nodal point spacing over the full range of the spatial "nite
di!erence mesh, thus allowing variable and smaller spacings at and near the shell
boundaries in conjunction with wider spacings at sections removed from the
boundaries.

3. FINITE DIFFERENCE REPRESENTATION OF TIME AND MERIDIONAL
CO-ORDINATE DERIVATIVES

Our system of equations to be solved by "nite di!erences for each Fourier
component consists of equations (8) as the "eld equations, equations (9) evaluated
at each boundary together with four additional equations (11) prescribing four of
the quantities w

n
, u/n

, uhn, b(n, N(n
, M

(n
, N

n
, and Q

n
at each boundary, and

equations (12) de"ning the initial conditions. We may then determine the variables
b
(n

, N
(n

, M
(n

, N
n
, and Q

n
on the interval s

0
)s)s

N
from equations (9) or (9)

and (10).
To solve these equations, we replace all derivatives in the equations by their "nite

di!erence equivalents to obtain a system of "nite di!erence equations which may be
applied at successive increments of the time variable. To write these algebraic
equations, we divide the shell meridian into N variable length increments between
the boundaries s

0
and s

N
and extend the shell an additional distance of two

increments beyond each of the boundaries s
0

and s
N

of the shell as shown in
Figure 4. By writing the equilibrium equations (8a) and (8c) at the N#3 meridional
stations on and between the points s

~1
and s

N`1
, equilibrium equation (8b) on and

between the boundaries s
0

and s
N
, equations (9) at each of the boundaries s

0
and s

N
,

and four of equations (11) at each boundary, we obtain 3N#25 equations for
determining the 3N#25 variables at each time increment.

We represent the accelerations at the "rst time increment t
1

typically as

wK
n
(s, t

1
)"

2[w
n
(s, t

1
)!w

n
(s, t

0
)!(Dt)wR

n
(s, t

0
)]

(Dt)2
. (13)

For times t*t
0
#2Dt, we represent the accelerations in equations (8) applied on

the interval s
1
)s)s

N~1
by "nite central di!erences about the time t!Dt. Thus,

typically,

wK
n
(s, t!Dt)"

w
n
(s, t!2Dt)!2w

n
(s, t!Dt)#w

n
(s, t)

(Dt)2

(s
1
)s)s

N~1
; t*t

0
#2Dt). (14)

Upon introducing equations (14) into equations (8), we obtain
explicit expressions for w

n
(s, t), u

(n
(s, t), and uhn(s, t) on the interval s

1
)s)s

N~1
for the second and succeeding time increments.



Figure 4. Node point layout for discretized shell, Ds"(s
N
!s

0
)/N.
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Subsequent to determining our displacements on the interval s
1
)s)s

N~1
, we

solve implicitly, at each boundary separately, the remainder of our system of
3N#25 equations to determine our remaining variables on the boundaries and at
all exterior points for the time t. Our accelerations appearing in equation (8)
evaluated at s

0
and s

N
for these systems of implicit equations will be represented

typically by

wK
n
(s, t)"

w
n
(s, t!2Dt)!2w

n
(s, t!Dt)#w

n
(s, t)

(Dt)2
(s"s

0
; s"s

N
; t*t

0
#2Dt).

(15)

For our spatial "nite di!erence mesh, we use a variable spacing "nite di!erence
representation for all derivatives. We develop these "nite di!erence expressions by
use of Taylor series expansions and solution for the undetermined coe$cients in
our expressions for the derivatives. This development, which provides a consistent
order of truncation error for all derivatives, is given in detail in reference [25]. Our
simpli"ed expressions for all derivatives in terms of the coe$cients G

i
(s), which are

functions of the a
j
and the node points s

j
as shown in Figure 4 for which we evaluate

the derivatives and which are de"ned in reference [25], are typically

w
,s
(s
j
)"G

1
w(s

j~1
)#G

2
w(s

j
)#G

3
w (s

j`1
), (s

~1
)s)s

N`1
; !1)j)N#1),

(16)

w
,ss

(s
j
)"G

4
w (s

j~1
)#G

5
w (s

j
)#G

6
w(s

j`1
)#G

7
w(s

j`2
),

(s
~1

)s)s
N
; !1)j)N), (17)
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w
, ss

(s
N`1

)"G
8
w(s

N~1
)#G

9
w (s

N
)#G

10
w(s

N`1
)#G

11
w(s

N`2
), (18)

w
, sss

(s
j
)"G

12
w (s

j~2
)#G

13
w(s

j~1
)#G

14
w(s

j
)

#G
15

w(s
j`1

)#G
16

w(s
j`2

), (s
0
)s)s

N
; 0)j)N), (19)

w
, sss

(s
~1

)"G
17

w(s
~2

)#G
18

w(s
~1

)#G
19

w(s
0
)

#G
20

w(s
1
)#G

21
w(s

2
), (20)

w
, sss

(s
N`1

)"G
22

w(s
N~2

)#G
23

w(s
N~1

)#G
24

w (s
N
)

#G
25

w(s
N`1

)#G
26

w(s
N`2

), (21)

w
, ssss

(s
j
)"G

27
w(s

j~2
)#G

28
w(s

j~1
)#G

29
w(s

j
)

#G
30

w(s
j`1

)#G
31

w(s
j`2

)#G
32

w (s
j`3

), (s
0
)s)s

N~1
; 0)j)N!1),

(22)

w
, ssss

(s
N
)"G

33
w(s

N~3
)#G

34
w(s

N~2
)#G

35
w(s

N~1
)

#G
36

w (s
N
)#G

37
w(s

N`1
)#G

38
w(s

N`2
). (23)

4. GOVERNING FINITE DIFFERENCE EQUATIONS

To convert equations (8), (9), (11), and (12) to spatial "nite di!erence form, we
make appropriate substitutions for the spatial derivatives appearing therein from
equations (16}23) inclusive. The time derivatives appearing in our equations will be
converted to temporal "nite di!erence form for the "rst time increment by utilizing
the backward temporal "nite di!erence representations given typically by equation
(13), thus rendering an implicit solution to our system of equations for the "rst time
increment.

Further, to produce more nearly equal coe$cients in our system of "nite
di!erence equations, we de"ne new force variables to be

N0
(n
"N

(n
]10~6, M0

(n
"M

(n
]10~6, N0

n
"N

n
]10~6, Q0

n
"Q

n
]10~6. (24)

We also de"ne new coe$cients C0 of the force variables to be

C0(N0
(n

)"C(N
(n

)]106, C0(M0
(n

)"C (M
(n

)]106,

C0(N0
n
)"C(N

n
)]106, C0(Q0

n
)"C(Q

n
)]106. (25)
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If, on the interval s
1
)s)s

N~1
, we represent our accelerations in equations (8)

by equations (14), we obtain explicit expressions for the variables w
n
(s, t), u

(n
(s, t),

and uhn(s, t) on that spatial interval. We then have available 14 separate
equations written for time t for each boundary to evaluate implicitly the remaining
variables in our system of equations for the time t. To obtain our implicit equations
for the boundaries s

0
and s

N
, the accelerations will be represented typically by

equation (15). The "nite di!erence equations representing equations (8) and (9)
together with the applicable computer program for both t

1
and t

2
are given in

reference [25].

5. SELECTION OF MERIDIONAL AND TIME INCREMENTS

To solve our system of "nite di!erence equations, choices must be made for the
increments Ds, Dt, and the multipliers a

j
of Ds which together with Ds de"ne the

meridional "nite di!erence mesh as shown in Figure 4. These increments together
with the multipliers a

j
must have magnitudes which produce numerical stability of

the "nite di!erence solution. We expect the required relations between the time and
spatial increments and the multipliers a

j
to be dependent upon the formulation of

the di!erential equations, the order of the "nite di!erence representations used for
the derivatives [13, 14], and the magnitudes and variations of a

j
over the whole

range of the "nite di!erence mesh. For any given spatial mesh, we expect to "nd
some value of Dt (MAX) for which values of Dt)Dt(MAX) will result in stable
solutions and for which values of Dt'Dt(MAX) will produce numerically unstable
solutions.

The selection of the meridional increments a
j
Ds will be based on the requirement

that the "nite di!erence solution for the static problem must converge to the true
solution of the di!erential equations. Thus, since in this case we are solving a system
of "nite di!erence equations in only one independent variable, stability is divorced
from our consideration of the choice of the increments a

j
Ds. We thus need only to

choose the increments a
j
Ds to minimize truncation and possibly round-o! errors.

We expect round-o! errors to be signi"cant as Ds approaches zero, and truncation
errors will be signi"cant if the a

j
Ds are chosen to be too large. Upon the basis of

static solutions obtained for typical shells, it appears that accurate static solutions
are obtained if the increments a

j
Ds are chosen to be one to four times the thickness

of the shell. We will therefore generally choose the increments a
j
Ds to lie within this

range for the solution of our "nite di!erence equations for the dynamic shell
problem and then use in conjunction therewith a value of Dt)Dt (MAX), where
Dt(MAX) will be found by an evaluation of the eigenvalues of the coe$cient matrix
for the displacements w

n
(s, t!Dt), u

(n
(s, t!Dt), and uhn(s, t!Dt) in our matrix

equation for w
n
(s, t), u

(n
(s, t), and uhn(s, t) for trial values of Dt. We obtain our initial

trial value of Dt for the coe$cient matrix eigenvalue analysis by use of the empirical
formula

Dt"(!0)2809524#6)7666667DM s!4)5333333DM s2

#3)0476190DM s3)10~6, (26)



Figure 5. Example cylindrical shell with continuous loading. The loading p (h, s, t)"
!1000 cos h (!n/2)h)n/2). The boundary conditions at s

0
are w"0, u

(
"0, uh"0, and

M
(
"0. Boundary conditions at s

N
are w"0, N

(
"0, uh"0, and M

(
"0. The thickness h"0)25 in.
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based on studies [23] of the cylindrical shell of Figure 5 and the parabolic shell of
Figure 6 (which have been veri"ed for the formulation of reference [25]), where

DM s"a
j
Ds(Min). (27)

To develop our criterion for numerical stability, we represent symbolically our
explicit relations for the variables w

n
, u
(n

, and uhn on the interval s
1
)s)s

N~1
as

;(s, t)"G(s, Ds, Dt); (s, t!Dt)!H;(s, t!2Dt)#Z (s, t!Dt), (28)

where

; (s, t)"[w
n
(s
i
, t), u

(n
(s
i
, t), uhn(si, t)]T (i"1,2,N!1), (29)

for which the three elements at s
i
are repeated successively at each i to generate

a column matrix of order 3N!3,

G(s, Ds, Dt)"[g
ij
(s, Ds, Dt)] (i"1,2, 3N!3; j"1,2, 3N!3), (30)

; (s, t!Dt)"[w
n
(s
i
, t!Dt), u

(n
(s
i
, t!Dt), uhn(si, t!Dt)]T (i"1,2, N!1),

(31)

H"I
3N~3

"unit diagonal matrix of order 3N!3, (32)

;(s, t!2Dt)"[w
n
(s
i
, t!2Dt), u

(n
(s
i
, t!2Dt),

uhn (si, t!2 Dt)]T (i"1,2, N!1), (33)



Figure 6. Example parabolic shell with continuous loading, p (h, s, t)"!100 cos h(!n/2)
h)n/2); r"10#0)15z#0)02z2. The boundary at s

0
is completely "xed, and the boundary at s

N
is

completely free. The thickness h"0)10 in.
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Z(s, t!Dt)"[displacement terms (s
~1

, t!Dt; s
0
, t!Dt;

s
N
, t!Dt; s

N`1
, t!Dt)]T

#[loading and force terms (s
i
, t!Dt)]T (i"1,2, N!1). (34)

We note that the Z(s, t!Dt) column matrices of summed terms at each node
point together with the terms for;(s, t!2Dt) will not enter into the analysis of the
G matrix. Only the coe$cients g

ij
of the three fundamental variables w

n
, u
(n

, and
uhn on the interval s

1
)s)s

N~1
constitute the elements of the G matrix. Thus,

stability or instability of our calculations will be governed solely by the behavior of
our solution as given by the matrix equation

;*(s, t)"G(s, Ds, Dt); (s, t!Dt)!H;(s, t!2Dt). (35)

The unit diagonal matrix H has eigenvalues b
j
"1 ( j"1, 2, 3,2, 3N!3)

and will not contribute to any numerical instability. Thus, as far as numerical
stability or instability is concerned, we need only to evaluate the behavior of the
matrix G.
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The matrix G in equation (35) is a banded matrix the width of which depends
upon the order of spatial "nite di!erence representations used for the derivatives in
our "eld equations. We may convert matrix G to diagonal form by the relation

G;(s, t!Dt)"jI; (s, t!Dt), (36)

where j is any of 3N!3 eigenvalues of the matrix G, where I is the unit diagonal
matrix of order 3N!3, and where j"j (Ds, Dt).

Thus, we have

(G!jI);(s, t!Dt)"0. (37)

The eigenvalues j
j
and the eigenvectors<

j
of the matrix G will be found from the

condition that the determinant of the coe$cient matrix for ; vanishes. Thus,

DG!jI D"0. (38)

The eigenvectors <
j
are given by

<
j
"C

j
[=

nj
(s
i
, t!Dt),;

(nj
(s
i
, t!Dt),;hnj(si, t!Dt)]T

(i"1,2, N!1; j"1, 2, 3,2, 3N!3), (39)

where=
nj

(s
i
, t!Dt), ;

(nj
(s
i
, t!Dt), and ;hnj(si, t!Dt) represent the eigenvector

displacements w
n
(s
i
, t!Dt), u

(n
(s
i
, t!Dt), and uhn (si, t!Dt) de"ning the shapes of

the eigenvectors for the Fourier component n on the interval s
1
)s)s

N~1
, and

where the C
j
are constants to be determined in each case to ensure that

3N~3
+
j/1

<
j
(s, t!Dt)";(s, t!Dt). (40)

Although they are not required for the purposes of this analysis, the (3N!3)
C

j
may be found by solution of the matrix equation

QC";, (41)

where

Q"[q
kj
] (k"1, 2, 3,2, 3N!3; j"1, 2, 3,2, 3N!3), (42)

C"[C
1
, C

2
, C

3
,2,C

3N~3
]T, (43)

and where ; is de"ned by equation (31).
The q

kj
in equation (42) are the eigenvector shape values=

n
, ;

(n
, and ;hn given

in equation (39).
We note in particular that each of the eigenvectors <

j
constitutes individually

a solution of the system of equations

G<
j
"j

j
<
j

(no summation on j). (44)
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From equation (38), we will obtain 3N!3 eigenvalues j
j
and their associated

eigenvectors<
j
. In terms of j

j
and<

j
, we have in lieu of equations (35) the following

equation for ;*(s, t):

;*(s, t)"
3N~3
+
j/1

j
j
<
j
(s, t!Dt)!H;(s, t!2Dt), (45)

where j
j
is the modulus of the real and imaginary, if any, eigenvalues j

j
(Re) and

j
j
(Im) of the matrix G.
By comparing coe$cients in equation (45) with the corresponding coe$cients in

equation (14) at times (t!2Dt), (t!Dt), and t, it is clear that the solutions obtained
by equation (28) will be stable if the maximum value of the eigenvalues of the matrix
G is less than or equal to two, i.e.,

Dj(max) D)2. (46)

We note that the elements g
ij

of matrix G are functions of Ds and Dt. However,
each of the elements g

ii
along the diagonal of the matrix has an additive constant

2)0 for the displacement terms w
n
(s
j
, t!Dt), u

(n
(s
j
, t!Dt), and uhn(sj, t!Dt),

respectively, as given by our explicit equations for w
n
(s
j
, t), u

(n
(s
j
, t), and uhn (sj, t).

For any chosen spatial mesh, we will "nd some value of Dt for which Dj (MAX) D is
equal to 2. Solutions will also be stable as we reduce Dt. As Dt is reduced, the
elements g

ij
o! the diagonal are reduced in absolute value; and, similarly, the

elements g
ii

on the diagonal are altered in value. As Dt approaches zero, only the
elements g

ii
along the diagonal will be signi"cant at a value of 2, and all eigenvalues

of the matrix G will be equal to 2. As Dt is increased beyond the value Dt for which
Dj (MAX) D"2, the elements g

ij
of matrix G will increase in value and produce

values for Dj(MAX) D'2, indicating unstable solutions.
The above development for a numerical stability criterion is applicable directly

for either the symmetric or the antisymmetric Fourier components for n*1.
Separate developments for the symmetric and antisymmetric Fourier components
for n"0, resulting in the same criterion as above for numerical stability, may be
found in reference [25].

To implement the above development, we have included in the computer
program accompanying reference [25] the subroutine EIGNCX [27], which will
determine all real and imaginary, if any, eigenvalues j

j
and the eigenvectors

associated with the real matrix G. To illustrate results of stability studies for
the cylindrical shell and loading shown in Figure 5, we assume that the initial
displacements and velocities are zero. For the boundary conditions, we assume that
w, u

(
, M

(
, and uh and zero at z

0
and that w, N

(
, M

(
, and uh are zero at z

N
. We take

for E a value of 30]106 lb/in2 for c a value of 0)2835 lb/in3, and for l a value of
0)30. We use only the symmetric Fourier components for n"0 to 4. Thus, the four
non-zero components entering into our evaluation are p

0
"!318)0, p

1
"!500)0,

p
2
"!212)0, and p

4
"42)0 lb/in2. We show in Table 1 the results of our stability

studies using the stability criterion of equation (46) for the nine di!erent mesh
spacings. The "rst four cases are for constant nodal point spacings, and the
remaining cases involve variable spacings as sequenced in Figure 4 and shown in



TABLE 1

Stability limits for example cylindrical shell for n"0, 1, 2 and 4

N Time increment Dt (10~6 s)
Mesh spacing No. of spaces between Ds a

j
Ds(Min)

case no. s
0

and s
N

(in) Values of a
j

(in) Stable Unstable

1 144 0)0625 1)00, 1)j)148 0)0625 )0)125 *0)150

2 72 0)125 1)00, 1)j)76 0)125 )0)50 *0)52

3 36 0)25 1)00, 1)j)40 0)25 )1)175 *1)200

4 18 0)50 1)00, 1)j)22 0)50 )2)350 *2)375

0)50, 1)j)18
5 52 0)25 1)00, 19)j)38 0)125 )0)50 *0)52

0)50, 39)j)56

0)50, 1)j)10
6 44 0)25 1)00, 11)j)38 0)125 )0)52 *0)54

0)50, 39)j)48

0)25, 1)j)2
0)50, 3)j)10

7 44 0)25 1)00, 11)j)38 0)0625 )0)50 *0)52
0)50, 39)j)46
0)25, 47)j)48

0)25, 1)j)4
0)50, 5)j)11

8 46 0)25 1)00, 12)j)39 0)0625 )0)200 *0)225
0)50, 40)j)46
0)25, 47)j)50

0)25, 1)j)10
0)50, 11)j)14

9 52 0)25 1)00, 15)j)42 0)0625 )0)125 *0)150
0)50, 43)j)46
0)25, 47)j)56

R
O

T
A

T
IO

N
A

L
L

Y
S
Y

M
M

E
T

R
IC

S
H

E
L

L
S
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TABLE 2

Matrix G eigenvalues j (MAX) for case numbers 3 and 8 in ¹able 1

Mesh
spacing
case no. Time increment Dt Stability
(Table 1) n (10~6 s) j (MAX) condition

3 0 1)175 1)99904 Stable
1)200 2)13313 Unstable

3 1 1)175 1)99932 Stable
1)200 2)13348 Unstable

3 2 1)175 1)99961 Stable
1)200 2)13455 Unstable

3 4 1)175 1)99981 Stable
1)200 2)13881 Unstable

8 0 0)200 1)99997 Stable
0)225 2)89117 Unstable

8 1 0)200 1)99998 Stable
0)225 2)89142 Unstable

8 2 0)200 1)99999 Stable
0)225 2)89216 Unstable

8 4 0)200 1)99999 Stable
0)225 2)89513 Unstable
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Table 1. It is of interest to compare the results for Cases 7 and 8 in Table 1. For
Case 7, a

j
Ds (Min) occurs over only two spaces outside each boundary and stable

solutions occur with Dt)0)50]10~6 s. For Case 8, a
j
Ds(Min) occurs over two

spaces both outside and inside the boundaries. This resulted in a reduction of the
stability limit to Dt)0)200]10~6 s. The validity of the results in Table 1 has been
con"rmed by actual running of the solutions. We show in Table 2 the maximum
eigenvalues of matrix G for Cases 3 and 8 of Table 1 for each of the Fourier
components n"0, 1, 2, and 4.

To investigate the stability conditions for the parabolic shell and loading shown
in Figure 6, we take the initial displacements and velocities to be zero. We assume
for the boundary conditions that w, u

(
, uh, and b

(
are zero at z

0
and that Q, N

(
, N,

and M
(

are zero at z
N
. We assume a value of 30]106 lb/in2 for E, a value of

0)2835 lb/in3 for c, and a value of 0)30 for l. For the given conditions, only the
equations containing the symmetric Fourier components enter into our evaluation.
We consider only the Fourier components for n"0 to 8 and have for the non-zero
components the values p

0
"!31)8, p

1
"!50)0, p

2
"!21)2, p

4
"4)2, p

6
"!1)8,

and p
8
"1)0 lb/in2 for the loading. We show in Table 3 the results of our stability

studies using the stability criterion of equation (46) for four di!erent mesh spacings.
The "rst three cases are for constant nodal point spacings, and the fourth
case involves variable nodal point spacings as sequenced in Figure 4 and shown in



TABLE 3

Stability limits for example parabolic shell for n"0, 1, 2, 4, 6 and 8

Mesh N Time increment Dt
spacing No. of (10~6 s)

case space between Ds a
j
Ds (Min)

no. s
0

and s
N

(in) Values of a
j

(in) Stable Unstable

1 144 0)16100671 1)00, 1)j)148 0)16100671 )0)75 *0)76
2 72 0)32201342 1)00, 1)j)76 0)32201342 )1)50 *1)52
3 36 0)64402685 1)00, 1)j)40 0)64402685 )3)00 *3)02

1)25, 1)j)56
4 90 0)25761073 0)625, 57)j)94 0)16100671 )0)76 *0)78
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Table 3. Again, the validity of these results has been con"rmed by actually running
the solutions. We show in Table 4 the maximum eigenvalues of matrix G for Cases
3 and 4 of Table 3 for each of the Fourier components n"0, 1, 2, 4, 6, and 8. It can
be seen from Tables 2 and 4 that the eigenvalues j(MAX) increase gradually as the
Fourier number n increases from 0 to the maximum value of n. Thus, we expect
stability (or instability) to be governed by the maximum value of n which is used in
our "nite di!erence analysis. It is not, therefore, expected to be necessary to
determine the eigenvalues for any of the Fourier components other than the
maximum value of n used in our shell analysis.

6. RESULTS FOR A PARABOLIC SHELL

The purpose of the present report was the development of "nite di!erence
procedures for either the static or dynamic analysis of general rotationally
symmetric shells which would provide a more e$cient solution for shell variables at
and near the boundaries of the shell than obtainable by use of a constant "nite
di!erence nodal point spacing used in other formulations. To obtain this more
e$cient solution, we envision and have incorporated in the governing "nite
di!erence equations the capability to specify a variable node point spacing over the
entire "nite di!erence mesh covering the interval s

~2
)s)s

N`2
. We expect its

advantages to be realized most e!ectively by specifying a "ner mesh segment at and
near the shell boundaries and a coarser mesh segment away from the boundaries.
To show the e!ects of the variable spacing at and adjacent to the boundaries, we
show examples of both static and dynamic solutions found by using both a
constant and a variable nodal point spacing when applied to the parabolic shell and
loading shown in Figure 6. It will be seen that essentially the same solutions may be
obtained with somewhat less nodal points on the shell meridian by use of a variable
and smaller spacing near the boundaries in lieu of a constant spacing of the "nite
di!erence nodal points over the full length of the shell meridian.

As an illustration of static solutions, we analyze the parabolic shell for the
loading shown in Figure 6 when the loading is statically applied. In all cases, we



TABLE 4

Matrix G eigenvalues j (MAX) for case numbers 3 and 4 in ¹able 3

Mesh
spacing
case no. Time increment Dt Stability
(Table 2) n (10~6 seconds) j (MAX) condition

3 0 3)00 1)99936 Stable
3)02 1)99936 Stable

3 1 3)00 1)99942 Stable
3)02 1)99941 Stable

3 2 3)00 1)99960 Stable
3)02 1)99960 Stable

3 4 3)00 1)99981 Stable
3)02 1)99981 Stable

3 6 3)00 1)99987 Stable
3)02 1)99987 Stable

3 8 3)00 1)99988 Stable
3)02 2)00188 Unstable

4 0 0)76 1)99996 Stable
0)78 2)21012 Unstable

4 1 0)76 1)99996 Stable
0)78 2)21015 Unstable

4 2 0)76 1)99997 Stable
0)78 2)21023 Unstable

4 4 0)76 1)99999 Stable
0)78 2)21054 Unstable

4 6 0)76 1)99999 Stable
0)78 2)21107 Unstable

4 8 0)76 1)99999 Stable
0)78 2)21181 Unstable
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assume that w, u
(
, uh, and b

(
are zero at z

0
and that Q, N

(
, N, and M

(
are zero at z

N
.

We take for E a value of 30]106 lb/in2, for c a value of 0)2835 lb/in3 and for
l a value of 0)30. We use only the Fourier components for n"0 to 8. Thus, the six
non-zero components entering into the solution are p

0
"!31)8, p

1
"!50)0,

p
2
"!21)2, p

4
"4)2, p

6
"!1)8, and p

8
"1)0 lb/in2. We make our analyses for

four di!erent mesh spacing layouts described as Cases 1}4 in Table 3. The "rst
three cases are for constant node point spacings of 0)1610, 0)3220, and 0)6440 in.,
respectively. Case 4 constitutes the variable node point spacing layout. We show in
Table 5, for each of the four mesh spacing layouts, values of w(s). It can be seen by
inspection of the results in Table 5 that results in reasonably good agreement with
each other may be found with any of the four mesh spacing layouts. It is seen also



TABLE 5

Example parabolic shell static solutions for w(s) at h"0 for n"0, 1, 2, 4, 6 and 8 for
constant and variable nodal point spacings

w (s) (in)

constant spacings
s Variable spacing

(in) Ds"0)1610 in Ds"0)3220 in Ds"0)6440 in (Table 3, Case 4)

0)000 !1)9116]10~17 !2)5294]10~19 0. !4)6992]10~18
2)576 !1)3164]10~2 !1)3131]10~2 !1)3012]10~2 !1)3137]10~2
5)152 !2)6051]10~2 !2)6029]10~2 !2)5945]10~2 !2)6034]10~2
7)728 !3)9054]10~2 !3)9054]10~2 !3)9050]10~2 !3)9051]10~2

10)304 !5)2138]10~2 !5)2150]10~2 !5)2193]10~2 !5)2142]10~2
12)880 !6)5188]10~2 !6)5197]10~2 !6)5229]10~2 !6)5190]10~2
15)456 !7)7863]10~2 !7)7863]10~2 !7)7866]10~2 !7)7861]10~2
18)032 !9)0059]10~2 !9)0054]10~2 !9)0048]10~2 !9)0056]10~2
20)608 !1)0202]10~1 !1)0202]10~1 !1)0204]10~1 !1)0202]10~1
23)184 !1)1394]10~1 !1)1395]10~1 !1)1401]10~1 !1)1395]10~1

TABLE 6

Example parabolic shell dynamic solutions for w(s
N
, t) at h"0 for n"0, 1, 2, 4, 6 and

8 for constant and variable nodal point spacings

w (s
N
, t) (in)

Constant spacings
Variable spacing

t Ds"0)1610 in Ds"0)3220 in Ds"0)6440 in (Table 3, Case 4)
(10~5 s) Dt"0)75]10~6 s Dt"1)50]10~6 s Dt"3)00]10~6 s Dt"0)75]10~6 s

0 0 0 0 0
12)0 !9)2422]10~3 !9)2343]10~3 !9)2070]10~3 !9)2423]10~3
24)0 !3)2779]10~2 !3)2757]10~2 !3)2674]10~2 !3)2779]10~2
36)0 !6)5527]10~2 !6)5502]10~2 !6)5395]10~2 !6)5531]10~2
48)0 !1)0262]10~1 !1)0260]10~1 !1)0247]10~1 !1)0264]10~1
60)0 !1)3686]10~1 !1)3677]10~1 !1)3663]10~1 !1)3674]10~1
72)0 !1)6378]10~1 !1)6376]10~1 !1)6369]10~1 !1)6384]10~1
84)0 !1)8679]10~1 !1)8663]10~1 !1)8659]10~1 !1)8670]10~1
96)0 !2)0529]10~1 !2)0505]10~1 !2)0526]10~1 !2)0506]10~1

108)0 !2)1767]10~1 !2)1793]10~1 !2)1748]10~1 !2)1788]10~1
120)0 !2)2253]10~1 !2)2204]10~1 !2)2160]10~1 !2)2223]10~1

ROTATIONALLY SYMMETRIC SHELLS 1141
that more accurate results on and near the boundaries may be achieved by use of
smaller spacings there in conjunction with wider spacings away from the
boundaries with appreciably less node points in the mesh than required by a
smaller constant spacing mesh.
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As an illustration of the e!ects of a variable nodal point spacing on dynamic
solutions, we analyze the parabolic shell of Figure 6 for the dynamic loading and
boundary conditions shown in Figure 6. In all cases, all other conditions are the
same as given above for the static loading illustration. We show in Table 6, for each
of the four mesh spacing layouts, values of w (s

N
, t). It can be seen by inspection of

the results given in Table 6 that displacements on the boundaries may be obtained
more accurately by use of smaller spacings at and near the boundaries in
conjunction with larger spacings elsewhere with markedly less node points in the
mesh than needed by a smaller constant spacing mesh.

7. CONCLUSIONS

The purpose of this article was to present the development of "nite di!erence
procedures for either the static or the dynamic analysis of rotationally symmetric
shells which provide a more e$cient solution for the shell variables at and near the
boundaries than obtainable by use of a constant nodal point spacing between the
boundaries as used in other formulations. This has been achieved by formulating
the system of "nite di!erence equations to permit an arbitrary nodal point spacing
in the "nite di!erence mesh over the entire spatial interval s

~2
)s)s

N`2
. It is

clear that a constant nodal point spacing may also be speci"ed in any particular
case if desired. In practice, the solution e$ciency will be obtained by specifying
a nodal point spacing with a "ner mesh segment near the boundaries and a coarser
mesh segment away from the boundaries of the shell.

We have shown in Tables 5 and 6, respectively, comparison static and dynamic
solutions (based upon constant versus variable nodal point spacings) for the
parabolic shell, loading, and boundary conditions described in Figure 6. It is seen
by a study of these results that essentially the same solutions may be obtained with
considerably less nodal points on the shell meridian by use of a variable and smaller
spacing near the boundaries in conjunction with a coarser mesh away from the
boundaries in lieu of a constant nodal point spacing over the full length of the shell
meridian.

The utility of the accompanying computer program has also been enhanced by
including therein an explicit empirical relation for a trial time increment Dt in terms
of the minimum spatial increment a

j
D

s
(Min). This empirical relation has been

based upon numerical stability studies for both the cylindrical shell shown in
Figure 5 and the parabolic shell described in Figure 6 as reported in section 5. The
major enhancement of this investigation is, however, the development and
implementation into the analytical program, which accompanies the report, of
a stability criterion which will determine numerical stability or instability for given
choices of Dt and spatial meshes prior to performing any extensive calculations.
The validity of the developed criterion has been con"rmed by comparison of the
results of applying the stability criterion with results of actual solutions for both the
cylindrical shell and the parabolic shell examples used herein.

It is of interest to compare the values in Tables 5 and 6 with the corresponding
values found in reference [23]. Values for a constant node point spacing are, as
expected, identical for the two formulations. In the cases for a variable node point
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spacing, the values in Tables 5 and 6 agree to 4 signi"cant digits with the results
found in reference [23].

We conclude that the "nite di!erence procedures developed here provide optimal
e$ciency for the "nite di!erence analysis of rotationally symmetric shells using
variable node point spacings under either static or dynamic loadings.

ACKNOWLEDGMENTS

Grateful acknowledgement is extended to Mr. Michael D. Parker, U.S. Army
Aviation and Missile Command, who implemented the author's computer program
of reference [25], obtained all solutions given therein and included herein, and
engaged in valuable discussions with the author during the program development.

Recognition is also given to the contribution of Mr. William R. Sellers, Jr.
(deceased), formerly an employee of the US Army Missile Command, who in 1988
developed the program subroutine EIGNCX for the numerical evaluation of the
real and imaginary components of the eigenvalues and eigenvectors of a general
matrix.

REFERENCES

1. R. K. PENNY 1961 Journal of Mechanical Engineering Science 3, 369}377. Symmetric
bending of the general shell of revolution by "nite di!erence methods.

2. P. P. RADKOWSKI, R. M. DAVIS, and M. R. BOLDUC 1962 ARS Journal 32, 36}41.
Numerical analysis of equations of thin shells of revolution.

3. B. BUDIANSKY and P. P. RADKOWSKI 1963 AIAA Journal 1, 1833}1842. Numerical
analysis of unsymmetrical bending of shells of revolution.

4. A. KALNINS 1964 ¹ransactions ASME 31E Journal of Applied Mechanics 3, 467}476.
Analysis of shells of revolution subjected to symmetrical and nonsymmetrical loads.

5. J. H. PERCY, T. H. H. PIAN, S. KLEIN, and D. R. NAVARATNA 1965 AIAA Journal 3,
2138}2145. Application of matrix displacement method to linear elastic analysis of
shells of revolution.

6. A. KALNINS 1964 Journal of Acoustic Society of America 36, 1355}1365. Free vibration of
rotationally symmetric shells.

7. H. KRAUS and A. KALNINS 1965 Journal of Acoustical Society of America 38, 994}1002.
Transient vibration of thin elastic shells.

8. S. KLEIN 1966 Shock and<ibration Bulletin 35, 27}44. Vibrations of multi-layer shells of
revolution under dynamic and impulsive loadings.

9. T. A. SMITH 1970 ;.S. Army Missile Command ¹echnical Report RS-¹R-70-5, Redstone
Arsenal, Alabama. Numerical solution for the dynamic response of rotationally
symmetric shells of revolution under transient loadings.

10. T. A. SMITH 1971 AIAA Journal 9, 637}643. Numerical analysis of rotationality
symmetric shells under transient loadings.

11. T. A. SMITH 1973 ;.S. Army Missile Command ¹echnical Report R¸-73-9, Redstone
Arsenal, Alabama. Implicit high order "nite di!erence analysis of rotationally
symmetric shells.

12. H. RADWAN and J. GENIN 1975 International Journal of Non-linear Mechanics 10, 15}29.
Nonlinear modal equations for thin elastic shells.

13. T. A. SMITH 1977 ;.S. Army Missile Research and Development Command ¹echnical
Report ¹¸-77-1, Redstone Arsenal, Alabama. Explicit high order "nite di!erence
analysis of rotationally symmetric shells.



1144 T. A. SMITH
14. T. A. SMITH 1980 AIAA Journal 18, 309}317. Explicit high-order "nite-di!erence
analysis of rotationally symmetric shells.

15. Y. B. CHANG, T. Y. YANG, and W. SOEDEL 1983 Journal of Sound and <ibration 86,
523}538. Linear dynamic analysis of revolutional shells using "nite elements and modal
expansion.

16. T. A. SMITH 1983 ;.S. Army Missile Command ¹echnical Report R¸-83-5, Redstone
Arsenal Alabama. Finite di!erence analysis of rotationally symmetric shells under
discontinuous distributed loadings.

17. T. A. SMITH 1987 AIAA Journal 25, 1611}1621. Finite di!erence analysis of rotationally
symmetric shells under discontinuous distributed loadings.

18. T. A. MANTEUFFEL and A. B. WHITE JR. 1986 Mathematics of Computation 47, 511}535.
The numerical solution of second-order boundary value problems on nonuniform
meshes.

19. T. A. SMITH 1991 ;.S. Army Missile Command ¹echnical Report RD-S¹-91-1, Redstone
Arsenal, Alabama. Dynamic Analysis of rotationally symmetric shells by the modal
superposition method.

20. C. H. NORRIS, R. J. HANSEN, M. J. HOLLEY, JR., J. M. BIGGS, S. NAMYET, and J. K. MINAMI

1959 Structural Design for Dynamic ¸oads. New York: McGraw-Hill Book Company,
Inc.

21. T. A. MANTEUFFEL and A. B. WHITE JR. 1992 SIAM Journal of Numerical Analysis 29,
1321}1346. A calculus of di!erence schemes for the solution of boundary-value
problems on irregular meshes.

22. T. A. SMITH 1994;.S. Army Missile Command ¹echnical Report RD-S¹-94-12, Redstone
Arsenal, Alabama. Improved explicit high-order "nite di!erence analysis of rotationally
symmetric shells.

23. T. A. SMITH 1995;.S. Army Missile Command ¹echnical Report RD-S¹-95-15, Redstone
Arsenal, Alabama. Finite di!erence analysis of rotationally symmetric shells using
variable node point spacings.

24. T. A. SMITH 1997 ;.S. Army Aviation and Missile Command ¹echnical Report
RD-S¹-97-5, Redstone Arsenal, Alabama. Improved numerical analysis of rotationally
symmetric shells using eight "rst-order "eld equations.

25. T. A. SMITH 1998 ;.S. Army Aviation and Missile Command ¹echnical Report
RD-PS-99-1, Redstone Arsenal, Alabama. Finite di!erence analysis of rotationally
symmetric shells using variable node point spacings and incorporating matrix stability
analysis.

26. E. REISSNER 1941 American Journal of Mathematics 63, 177}184. A new derivation of the
equations for the deformation of elastic shells.

27. W. R. SELLERS JR 1988 ;.S. Army Missile Command ¸etter Report AMSMI-RD-SS-88-
25, Redstone Arsenal, Alabama. A mathematical library for your PC.

APPENDIX A: NOMENCLATURE

A
1
,2, A

10
parameters de"ning the coe$cients of the variables in equation (8a)

B
1
,2, B

13
parameters de"ning the coe$cients of the variables in equation (8b)

C coe$cients of the force variables N
(n

, M
(n

, N
n
, and Q

n
in the "nite di!erence

equations obtained before change of force variables
C0 coe$cients of the modi"ed force variables N0

(n
, M0

(n
, N0

n
, and Q0

n
in the

governing "nite di!erence equations
C

1
,2, C

9
parameters de"ning the coe$cients of the variables in equation (8c)

D #exural rigidity of the shell, Eh3/12(1!l2)
D

1
,2, D

50
parameters de"ning the coe$cients of the variables in equations (9) and (10)

E Young's modulus
g acceleration constant
h thickness of the shell
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K extensional rigidity of the shell, Eh/(1!l2)
mh, m(

moments of the mechanical surface loads
Mh,M(

,Mh( moment stress resultants
M0
(n

M
(n

]10~6
n integer, designating the nth Fourier component
N, Q e!ective shear resultants
N0

n
, Q0

n
N

n
]10~6 and Q

n
]10~6

Nh,N(
, Nh( membrane stress resultants

N0
(n

N
(n

]10~6
p, ph, p( components of the mechanical surface loads
Qh,Q(

transverse stress resultants
r distance of point on the middle surface of the shell from the axis of symmetry
Rh,R(

principal radii of curvature of the middle surface of the shell
s distance from an arbitrary origin along the meridian of the shell in the

positive direction of /
Ds reference spacing between node points in the meridional "nite di!erence

mesh
t independent time variable
Dt increment of the time variable t
¹

0
, ¹

1
integrated values of temperature resultants

uh, u(, w components of displacement of the middle surface of the shell
z distance of point on the middle surface of the shell measured from the origin

along the axis of symmetry
a
j

multipliers of reference spacing Ds for obtaining variable node point spacings
in the "nite di!erence mesh

bh, b( angles of rotation of the normal to the middle surface of the shell
c weight of shell material per unit volume
h,/, o coordinates of any point of the shell
l Poisson's ratio
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